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A B S T R A C T   

Large-scale tree planting has been advocated for decades in many countries as a cost-effective strategy to mitigate 
carbon, rejuvenate degraded landscapes, and support local livelihoods. Recent studies, however, suggest limited 
ecological and livelihood impacts of tree planting programs, indicating possible limits to tree planting as a 
natural climate solution. In this paper, we explore these carrying capacity-like limits by evaluating the site 
suitability of forestry landscapes of the northern Indian state of Himachal Pradesh using theory/expert-based 
rules and machine learning algorithms. We find that the state can only achieve a maximum of 31.54% forest 
cover due to socio-ecological and biophysical constraints, much less than India’s goal of bringing 66% of the total 
geographical area of Himalayan states into forest cover. The low availability of suitable lands for growing trees, 
together with poor plantation site selection by forest range officers limit the use of tree planting as a sole climate 
mitigation strategy. To approach theoretical planting limits, we propose an ePSA (e-Plantation Site Assistant) 
recommendation system based on our site-suitability results to assist forest rangers in selecting suitable sites for 
planting trees. An initial deployment of the recommender system suggests its potential utility in shaping the long- 
term success of tree plantations as an effective carbon strategy in northern India and beyond. Overall, we argue 
that there is a need to realign over-ambitious national and international tree planting targets with actual limits 
from site characteristics to avoid massive wastage of funds and to obtain feasible carbon mitigation outcomes.   

1. Introduction 

The recent push to promote large-scale tree planting as a climate 
change mitigation solution has fueled a fierce debate around the nature 
and intensity of social-economic and ecological impacts of these pro
grams (Bastin et al., 2019; Busch et al., 2019; Fleischman et al., 2020; 
Malkamäki et al., 2018). Supporters favor massive tree planting due to 
its cost-effectiveness and global carbon sequestration potential, whereas 
opponents focus on adverse effects on local livelihoods, biodiversity, 
and ecology (Bastin et al., 2019; Busch et al., 2019; Fleischman et al., 
2020; Veldman et al., 2019). 

Plantations have been shown to improve soil properties (Singh et al., 
2004) and reduce carbon emissions substantially when they convert to 
established forests (Raza et al., 2021). On the other hand, recent studies 
have found limited effects of decades of tree planting on forest canopy 
cover and rural livelihoods (Coleman et al., 2021; Ramprasad et al., 
2020). Other studies have found massive wasteful expenditure due to 
poor selection of plantation areas by forest rangers, mainly driven by the 
target-driven nature of tree-planting programs (Rana et al., 2022). Such 

scholarship suggests potential limits to scaling up of tree-based natural 
climate solutions mainly due to socio-economic, biophysical, and 
edaphic factors. 

Despite the increasing importance of tree planting, little attention 
has been paid to assessing critical limits to tree-planting in forestry 
landscapes based on plantation site suitability. Better selection of 
plantation sites can help achieve higher forest cover efficiently—similar 
to developing energy efficiency and promoting efficient fuel substitution 
in the energy sector, which has shown tremendous potential in reducing 
carbon emissions while enhancing economic growth (Lin et al., 2022; 
Raza and Lin, 2022). Selecting plantation sites without assessing local 
biophysical, edaphic, and socioeconomic conditions can lead to poor 
plantation survival over the longer term (Coleman et al., 2021; Rana 
et al., 2022). For example, planting trees in dry, exposed, and poor soil 
areas may result in complete loss of planted trees in due course of time. 
Saplings require congenial biophysical, social, and edaphic factors; lack 
of any of these factors may limit the survival of saplings and lower the 
long-term success of the planted forest plantations. Presently, sites are 
mostly selected by forest frontline staff through their field scrutiny of the 
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potential field locations. These selections are mostly subjective with no 
cost-benefit analysis and no technical support available to assist in these 
site selection decisions, resulting in massive wasteful expenditure (Rana 
et al., 2022). 

The latest developments in remote sensing, geographic information 
systems (GIS), and machine learning (ML), however, show great promise 
in providing site-specific guidance to field staff in selecting the right 
places for planting trees. Studies have used remote sensing data coupled 
with GIS to locate potential tree-planting sites (Cuong et al., 2019; Wu 
et al., 2008), to evaluate the suitability of land for tree plantations 
(Basir, 2014) and agroforestry (Ahmad et al., 2017), and to specify tree 
species under tree plantations (Chen et al., 2019; Lahssini et al., 2015). 
ML has also been used to evaluate land suitability for agriculture and 
forestry (Loi, 2008; Sarmadian et al., 2014), to predict site index 
(Sabatia and Burkhart, 2014), and to predict future land use transition 
areas and scenarios (Grinand et al., 2020). 

ML-based models can assist forest rangers in choosing socially and 
ecologically appropriate sites for planting trees, similar to ML applica
tions in other fields such as prioritizing animal feed locations (Han
dan-Nader and Ho, 2019) and prioritizing environmental inspections 
(Hino et al., 2018). ML can use large social, spatial, and ecological 
datasets to learn patterns and then identify areas appropriate for 
growing trees. Moreover, ML can enable systems to continuously update 
their decisions based on new data from decisions and responses of users 
(Appel et al., 2014; Salganik, 2019; Varshney, 2016). As such, ML shows 
promise but also involves many challenges in the context of developing 
site suitability applications. 

These challenges include the following. First, plantation data is 
highly skewed and imbalanced. Official data only covers sites selected 
for planting trees (positive labels) and we usually lack information about 
sites that rangers have rejected for planting (negative labels). Second, 
historical datasets on plantations do not have spatial information and so 
we do not know exactly where planting (sites of positive labels) 
happened. Moreover, plantation records are not systematic and uniform 
across the landscape, leading to potential biases. Third, there is signif
icant heterogeneity in the size and site characteristics of plantation areas 
from one place to another, so a universal predictive plantation model 
may not be appropriate for all sites. Fourth, forest officials may game the 
system to serve their vested interests by omitting certain plantation 
areas as possibilities; this lack of accountability and transparency can 
lower the potential of plantation recommendation engines. Finally, 
there is a lack of large-scale, fine-resolution data on factors that influ
ence site selection. The several sources of spatial data from government 
or international platforms are inadequate due to poor resolution and 
incompatibility among several geospatial layers. Moreover, limited 
financial resources and human resources restrict the large-scale collec
tion of soil survey data and other biophysical factors at a finer scale. 

Purely data-driven systems are limited (Hofman et al., 2017; Selbst 
et al., 2019) due to social-ecological complexity and large-scale het
erogeneity that limit gathering of real or (realistic) training data that 
covers the universe of possibilities in a forestry landscape. If a range of 
factors, interactions, and feedback loops that affect planting decisions 
are not captured properly in data-driven models and the complex forest 
system is abstracted too much, the resulting incorrect classifications will 
have critical safety impacts on livelihoods, biodiversity, and carbon 
storage (Hofman et al., 2017; Mueller et al., 2019; Selbst et al., 2019; 
Thompson et al., 2012). In particular, existing planting site suitability 
classifiers are only loosely supported by data for areas of the feature 
space unobserved in training data, leading to wild extrapolation in such 
areas (Kshetry and Varshney, 2019). Even methods such as covariate 
shift, domain adaptation, meta-recognition (Scheirer et al., 2011), reject 
options, or estimating the confidence of deep learning models (Mallick 
et al., 2020) fail to contribute much in the presence of large-scale 
epistemic data uncertainty, as here. This points to addressing planting 
site selection not as a pure ML problem, but with a hybrid AI approach. 
Here, we use an algorithm fusion approach to AI wherein we combine 

theory/expert-based rules with an ML algorithm to predict site suit
ability for growing trees (Kshetry and Varshney, 2019). 

This paper has two main objectives. First, we take a physics-based 
artificial intelligence (AI) approach in the form of algorithm fusion to 
explore limits to tree planting by analyzing site suitability in the 
northern Indian state of Himachal Pradesh for growing trees successfully 
over a longer term. Second, we use our AI approach in developing an e- 
Plantation Site Assistant (ePSA), a site-recommendation engine, to assist 
forest range officers to identify suitable blank patches inside forest areas 
for growing trees. 

We consider limits to tree planting as akin to the notion of carrying 
capacity in mathematical ecology (Kingsland, 1995; Young, 1998) while 
taking socio-ecological and biophysical constraints into account. Spe
cifically, we use traditional forestry knowledge to guide and weight 
features that affect site suitability scores for growing trees and use an ML 
model to capture large landscape-level deforestation dynamics. The 
overall AI system explores the potential for effective tree growth and 
survival due to congenial biophysical, social, and edaphic factors and 
maps site suitability for the entire state of Himachal Pradesh. Although 
fundamental limits are insightful for policymaking and planning, it is 
also important to have practical ways to approach those limits. Just like 
the Carnot limit in thermodynamics inspires and is approached by the 
Diesel engine design, and like the Shannon limit in information theory 
inspires and is approached by low-density parity-check codes in tele
communications, here we also develop recommendation algorithms for 
tree planting to guide forest staff in making better decisions that achieve 
the limits, which we also establish. 

India aims to mitigate 2.5–3 billion tons CO2e (0.61–0.73 Pg C) by 
2030 with a heavy focus on tree planting to achieve this goal under 
India’s Nationally Determined Contribution (Government of India, 
2015; Singh et al., 2021). In this context, the Government of India has 
initiated several government initiatives such as Green India Mission, 
Compensatory Afforestation Fund Management and Planning Authority 
(CAMPA) (Asher and Bhandari, 2021) and even incentivized the 
mountainous states of northern India such as Himachal Pradesh (and 
other states with substantial forest cover) in the form of green bonuses or 
extra funds to protect forest cover and support tree planting through 
various programs and schemes (Busch and Mukherjee, 2018; Rana and 
Miller, 2021). Note that the mountainous regions also form an important 
water catchment drainage zone for the northern agricultural belt of 
India, so tree planting acts to protect soil erosion and boost water flow to 
agricultural regions of northern India, thereby increasing agricultural 
productivity. In such goals, assessing the critical limits to tree planting 
and then, suggesting suitable sites to grow trees through a recommen
dation engine can play an important role, especially since recent 
scholarship has shown poor survival of the plantations and massive 
wasteful expenditure (Coleman et al., 2021; Rana et al., 2022). 

In Himachal Pradesh, this paper shows that there are substantial 
limits to tree-planting as a natural climate solution due to the low 
availability of suitable areas that can be planted to increase forest cover. 
Such limits are present mainly because of limiting socio-economic, 
ecological, biophysical, and edaphic factors, which constrain any 
effective growth of trees over longer term. Despite such limitations, our 
results show that foresters are largely planting trees in areas which are 
either largely unsuitable or low suitable areas in the state of Himachal 
Pradesh. By computing fundamental limits to tree-planting and recom
mending best places to plant, national and state governments can reduce 
the massive waste involved in current target-driven planting programs 
(Rana et al., 2022), which are often remnants of mismatched colonial 
policies (Davis and Robbins, 2018) rather than having basis in local or 
scientific knowledge. In this sense, and in the sense of combining 
traditional indigenous knowledge with modern scientific knowledge 
(Rana and Varshney, 2020), such AI techniques can have decolonizing 
impacts (Tuhiwai, 1999). 

We further provide preliminary evidence on the potential utility of a 
recommender system in shaping the long-term success of tree 
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plantations by ranking the lands as per their potential to grow trees. 
Although such a recommender system needs further ground validation 
and testing, its initial deployment results show its practical utility and 
potential use in largely similar contexts for other developing countries in 
assisting industrial and small-scale tree planting programs. The aim is to 
save money and resources by assisting forest rangers to select the best 
tree planting sites for carbon mitigation, so as to approach the funda
mental limits of tree planting. 

2. Methodology 

2.1. Study area 

We chose Himachal Pradesh, one of the northern states in India for 
the research (Fig. 1). Improving tree and forest cover has been a major 
priority for the Government of India since independence. The National 
Forest Policy of 1952 and subsequent policies consistently aim to 
improve forest cover to meet a variety of objectives including industrial 
development, increasing forest cover, rejuvenation of degraded land
scapes, and livelihood generation. India aims to bring 66% geographical 
area in each of its Himalayan states such as Himachal Pradesh under 
forest cover (Joshi et al., 2011; Negi, 2009). To achieve this goal, every 
year, millions of hectares of forestland is planted with trees all over the 
Himalayan region. The increasing push to adopt tree-planting as a 
cost-effective and measurable climate mitigation strategy has also 
resulted in massive tree-planting under national, international, and 
donor-funded programs and projects. 

Also note that since 2002, Himachal Pradesh has spent an estimated 
248.24 million US dollars on tree-planting programs, covering an area of 
236,686 Ha (Himachal Forest Statistics, 2019). The state has planted 
about 1.14 million hectares since 1950 mainly to improve forest cover 
through the forest department (Rana et al., 2022). The total expenditure 
of the state on tree planting during the period between 2012 and 2017 
was $110.11 million, which is a substantial amount given the lower 
overall economic status of the state in the country due to its lower in
come and higher dependence on the Indian government for flows of 
funds (Himachal Forest Statistics, 2019). 

We have chosen Himachal Pradesh to evaluate limits to tree planting 
and test ePSA recommendation engine for two main reasons. First, 

Himachal Pradesh is one of the most developed and well-governed states 
in northern India and is ranked second after Kerala in many human 
development indicators. All the requisite conditions for evaluating 
plantation site suitability in the state of Himachal Pradesh and for 
developing an effective ePSA recommendation engine to assist tree 
planting are present. If tree-planting does not follow site-suitability 
criteria and shows poor site selection in the relatively favorable social, 
economic, and political contexts of Himachal Pradesh, our tree-planting 
recommendation approach will likely be ineffective in more challenging 
contexts of the other northern Indian states, other parts of India, and 
many similar developing countries. Second, the state of Himachal Pra
desh showed its commitment to move forward with site-suitability 
assessment and in developing this application and provided govern
ment spatial and social datasets and expert guidance to develop ePSA to 
prioritize tree planting patches across the state as per their tree growth 
potential. 

2.2. Methodology – algorithm fusion 

We used an algorithm fusion methodology (Kshetry and Varshney, 
2019) to assess limits to tree planting based on site-suitability and to 
create the plantation site recommendation engine as in Fig. 2, with a 
further two-stage process. The first stage leverages rule-based and ML 
algorithms with remote sensing data to predict site suitability (Step 1 to 
Step 4), and the second stage uses those predictions to prioritize the most 
appropriate tree planting sites as per site suitability values (Step 5 and 
6). 

We combine forestry science knowledge with a ML classifier in the 
form of algorithm fusion to control epistemic uncertainty and maintain 
AI decision safety (FAO, 1984; Hofman et al., 2017; Kshetry and Var
shney, 2019; Selbst et al., 2019). The idea is to combine theoretical and 
expert forestry knowledge with learned models to cover not only the 
known factors that affect planting decisions, but also the other known or 
unknown factors that affect these decisions but for which we do not have 
data to train purely ML models. 

Algorithm fusion has two parts. First, we construct expert-based 
rules. We use traditional forestry knowledge to consider existing land 
uses by local communities, places where natural constraints restrict tree 
growth, and areas where existing dense vegetation limits tree planting 

Fig. 1. Map of Himachal Pradesh, India, the study area.  
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(FAO, 1984). We also include rules based on the extent and change of 
tree cover, slope, aspect, elevation, soil quality, and nearness to habi
tations in our scoring algorithm to predict the site suitability of each 
studied forest grid cell. These rules originate from theory, past schol
arship, and technical studies (FAO, 1984; Rana and Varshney, 2020a). 
We use satellite data from various national and international sources, 
perform feature engineering, and create relevant indicators that may 
influence the site suitability of the location. 

Second, we further employ ML trained on a large set of features (n =
31) to capture landscape-level deforestation dynamics to properly ac
count for factors that lead to tree cover loss in any landscape, a process 
that is largely outside the ability of human-derived traditional knowl
edge to capture. These two pieces are then used together via algorithm 
fusion. We have used QGIS, ArcGIS, and Python capabilities to process 
the geospatial data and to make it useable for developing this 
application. 

2.2.1. Data collection: feature engineering 
We collect spatial data on 18,672 forest polygons (forest compart

ments) from Himachal Pradesh Forest Department GIS Lab, out of which 
we removed 1998 polygons due to missing data. We used the rest of the 
16,674 forest polygons to build our ML model. These forest polygons 
record the location of the forest department-owned land throughout the 
state. Plantations occur inside these forest polygons, and we assume that 
training our ML model at the level of forest polygons reasonably predict 
the plantation suitability score for the entire state. 

Open access spatial datasets related to social, biophysical, and 
ecological factors that associate with the long-term success of tree 
planting were used to create various features used in the recommen
dation engine. These features were identified based on theory and expert 
knowledge that determine the availability of blank areas as well as 
suitability for the long-term successful growth of trees (for details, 
please refer to Supplementary Tables S1 and S2). We used guidance from 
the Food and Agriculture Organization and traditional forestry knowl
edge from forestry field staff to evaluate limits to tree planting and to 
inform our recommendation system (Booth and Saunders, 1985). Trees 
require adequate temperature, moisture, nutrients, aeration, appro
priate radiation, and a rooting environment as well as the absence of 
conditions such as adverse soil, climatic, and other conditions such as 
attack by pests and diseases (FAO, 1984). 

Variables included in the site suitability assessment and recom
mendation engine include forest cover data from the Forest Survey of 
India (FSI), which has time series cover data on tree density classes. 
These classes include open forest (10–40% canopy density), moderately 
dense forest (40–70%), very dense forest (>70%), non-forest, scrub, and 
water. The prior extent of vegetation is a critical factor that determines 
the extent and possibility of growing trees in any landscape. Open forest 
patches are potential spots for growing trees, provided they are not 
natural blanks or rocky lands, and there are no other biophysical limits 
that constrain the successful growth of trees. 

Other important factors that determine the growth of trees include 
elevation, slope, and aspect of plantations. Elevation beyond the tree 
line (~3800 m) and the presence of southern slope both prevent any 
productive tree growth. We use soil depth and soil carbon (organic and 
inorganic) as critical determinants that guide whether trees will grow 
and establish over the long term. Higher soil depth and soil carbon 
facilitate the successful establishment of plantations due to the higher 
availability of soil nutrients, soil moisture, and humus. We have used the 
number of villages in the vicinity of the assessed forest grid cell (forest 
patch) as indicative of higher resource use, which can restrict the success 
of tree planting over the long term. In addition, we collected spatial data 
for roads, urban areas, water bodies, snow, agriculture, grasslands, and 
desert areas (Trans Himalaya) from open-source spatial datasets (please 
refer to Supplementary Tables S1 and S2). 

We created a 265 m2 grid (7.0225 ha) for the entire state of Himachal 
Pradesh using QGIS for recommending growing of trees at the grid level. 
This size of the grid cell is used at 7.0225 ha so that each recommended 
grid cell must have at least 3–5 ha of area that can be planted. A total of 
795,826 grid cells were created. Critical value ranges for various vari
ables used in the analysis differ across various landscapes and even 
within grid cells due to variation in biophysical, ecological, and socio- 
economic context, therefore it is not feasible to give specific within 
grid-level details for each variable (FAO, 1984). We use a single value 
for each variable for each grid cell to facilitate analysis. We store these 
variables in the PostgreSQL database and then use the PostGIS extension 
to create various features for each grid cell using Python. The spatial 
data was geoprocessed in QGIS and ArcMap. 

2.2.2. Rule-based metrics and scoring 
First, we used guardrails in the form of exclusion rules, which are 

Fig. 2. Overview of methods.  
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based on traditional forestry knowledge to identify blank patches for 
growing trees in the state. We then exclude areas that are covered with 
grasslands, alpine or sub-alpine pastures, natural blanks, snow, water 
bodies, agriculture, urban areas, roads, and highways from the potential 
areas available for tree planting. We also exclude areas with very dense 
forests, those falling inside ‘Trans Himalaya’, dry desert zone, and with 
elevation more than 10,000 feet from mean sea level. 

Natural blanks are areas that are devoid of any vegetation for a long 
time due to critical limits to tree growth imposed by local environmental 
and biophysical limits. We identify forest patches (grid cells) falling 
inside such natural blank areas by using a set of expert or traditional 
forestry rules based on changes in tree density between 2001 and 2019. 
We identify natural blanks by calculating the change in the tree canopy 
density for open forest (10–40% density), moderately dense forest 
(40–70%) and very dense forests (>70% density) and for non-forest, 
scrub and water categories for each forest patch (grid cell) for various 
combinations (change in each category between 2001 and 2003; be
tween 2003 and 2005; between 2005 and 2009; between 2009 and 
2013; between 2013 and 2015; between 2015 and 2019) as per Forest 
Survey of India satellite data (Forest Survey of India, 2019). Forest 
patches or grids with zero value and witnessing no change in zero values 
for above categories and for respective time periods are categorized as 
natural blanks as those that are devoid of any tree growth. 

Finally, we created rule-based scores for each grid cell based on 
theory and expert advice from several senior forest officers and frontline 
field staff. The rubric for scoring grid cells based on expert/theory is 
given in Table S2. To store and query spatial datasets, we used the 
PostgreSQL database and its extension called PostGIS, which adds sup
port for geographic objects to the PostgreSQL open-source object-rela
tional database. We created different features based on our spatial 
queries, which were run on PostGIS using Python. 

2.2.3. Model building and evaluation 
To build our ML model, we use a dataset comprising of 16,674 forest 

polygons in Himachal Pradesh that records the location of all 
government-owned land and then, employ our ML model to predict 
plantation site suitability for each of the 795,826 grid cells in the entire 
state. 

2.2.3.1. Dataset and variables. We use a training dataset comprising of 
spatial data on 16,674 georeferenced forest polygons in Himachal Pra
desh with labeled tree cover loss (deforestation) outcomes for each 
forest polygon. The labeled tree cover loss outcome is a binary outcome 
and is measured as the decline in tree canopy cover (1 = tree cover loss; 
0 = no tree cover loss) between 2003 and 2015 as reported by Forest 
Survey of India. 

In our analysis, we use past tree cover loss in our studied forest 
polygons (n = 16,674) as a proxy for evaluating plantation site suit
ability in 795,826 grid cells across the state of Himachal Pradesh. In 
other words, we expect that areas similar to those that have lost tree 
cover or experienced deforestation are more likely to lose tree cover in 
the future, and therefore are likely to have lower plantation site suit
ability for growing trees. Exploring changes in tree cover loss is a useful 
metric as it can be used under diverse contexts worldwide, reflect and 
take into consideration multiple factors and processes including man
agement and human use that shape the suitability of a particular site to 
grow and establish trees and maintain forest cover over long-term. 

Our predictors in the ML model include socio-economic and bio
physical parameters, as identified from the theory, technical studies, and 
past scholarship. These include human forest dependence attributes as 
indicated by population, number of forest dependents, level of literacy, 
grazing density, road density, number of farmers and economic activity 
in addition to soil and biophysical characteristics. Data on social in
dicators was calculated either by summing up the corresponding values 
of census villages (for population, farmers, literates, forest dependence) 

or by averaging (for grazing density, road density and economic activ
ity), which were found within a particular forest polygon. In addition, 
we included baseline data on land use (forest cover, cropland, grassland 
or bare-land), data on soil quality (soil depth, soil carbon, soil pH, bulk 
density, cation exchange capacity, and available soil water capacity), 
and information on altitude, slope, temperature, precipitation, area and 
forest fires in our predictive model. For more details, please refer to our 
Supplementary Materials. 

2.2.3.2. Building and evaluating XGBoost model using forest polygons (n =
16,674). We build a XGBoost model to generate tree cover loss pre
dictions for our studied polygons (n = 16,674). In our model, we assign 
tree cover loss as positive values (mortality; tree cover loss = 1; no tree 
cover loss = 0) and then, randomly split the data into a “training” 
dataset (80%) and a “test” dataset (20%) using scikit-learn in Python. We 
develop the XGBoost predictive model using the training dataset and 
then employ the resulting model to predict tree cover loss probability for 
the test dataset for model validation. We use 100 trees in building our 
XGBoost model and keep other parameters as their default values due to 
small sample size. We import XGBClassifier from XGBoost library in 
Python to build our model. Given the heterogeneity of features and the 
fact that some of the features are categorical, we focused on decision- 
tree based ensemble-based methods. In this analysis, we tried two 
models: Random Forest (Breiman, 2001) and XGBoost (Chen and 
Guestrin, 2016) under standard parameters and finally, selected 
XGBoost model based on performance metric. 

We evaluated the performance of our models based on confusion 
matrix based on the criteria of precision and recall. Confusion matrix is 
performance metric for classification-based machine learning problems 
wherein the outcome can be two or more classes. 

Where: 

True Positive (TP): Algorithm predicted positive class and it is true 
True Negative (TN): Algorithm predicted negative class and it is true 
False Positive (FP): Algorithm predicted positive class and it is false 
False Negative (FN): Algorithm predicted negative class and it is 
false. 

Precision is the ratio of the actual positive classes out of all the 
positive classes predicted correctly, i.e. TP/TP+FP, whereas Recall is the 
ratio of the correct predicted classes out of the all the positive classes, i.e. 
TP/TP+FN. We used 3-folds cross validation and evaluate its recall and 
precision attributes with a focus on maximizing recall. In our case, we 
believe recall is more valuable compared to precision as missing a true 
positive (tree cover loss) may lead to serious ramifications for biodi
versity and forest cover in the area. 

The XGBoost model we develop has the following performance: 
Predictive accuracy = 67.92%; Recall for tree cover loss (mortality) =
0.57; precision = 0.63; f1-score = 0.59). Finally, we use our selected 
XGBoost model to predict tree cover loss probability for 795,826 grid 
cells (for entire state). Based on this probability, we calculate the 
plantation site suitability score for each of the grids, which ranges from 
0 to 100%. 

In cases where there are multiple grid cells within a compartment, 
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we consider all these grid cells to have an increase (or decrease) in tree 
cover loss if we found an increase (or decrease) in tree cover loss in that 
compartment. In cases where a single grid cell is present in multiple 
compartments, we used the prediction results for the compartment with 
the largest coverage for that grid cell. 

ML-based analysis at the forest polygon level is done to incorporate 
deforestation (tree cover loss) dynamics and associated factors and 
processes operating at the landscape level. Incorporation of the defor
estation probabilities in the tree planting recommendation engine along 
with expert-based rules make the engine more powerful in predicting 
site suitability classes for growing trees. 

2.2.3.3. Robustness tests for the model. Initially, we start with Random 
Forest and XGBoost predictive models and evaluate their corresponding 
performance using 3-folds cross validation. We import Random
ForestClassifier from sklearn.ensemble python API to build Random 
Forest model using 100 trees. We then compare and evaluate the 
comparative performance of Random Forest and XGBoost model using 
3-folds cross-validation and the corresponding classification summary. 
Our XGBoost model performed better than Random Forest model in 
terms of recall (Recall: XGBoost = 0.57; Random Forest = 0.55). In other 
words, our chosen model can help identify tree cover loss outcomes (a 
true positive) better than Random Forest and hence, can be suitable to 
effectively assessing tree cover loss outcomes in the area. 

2.2.4. Algorithm fusion 
Finally, we used scoring rules for each grid cell in terms of its suit

ability to grow trees in terms of the presence of blank areas for planting 
and the site suitability of a site to support tree growth. 

Let X1 to Xn be scoring variables for the forest grid cells (parcels) of 
size 7.0225 ha (795,826 grid cells) created for the entire state of 
Himachal Pradesh. Let S1 to Sn be the site suitability scores for each of 
forest grid cell based on the expert/theory rules. Let M1 to Mn be the site 
suitability scores for each forest grid cell based on the machine learning 
model. The final score for each grid cell is weighted with 90% weight 
given to the score from theory/expert-based rules and 10% weight given 
to the ML-driven score, Xi = 0.9Si + 0.1Mi. We will describe how we 
choose these weights shortly. 

The site suitability score ranges from 0 to 100, for each forest grid 
cell/parcel. Based on this score, we divide the entire area available in the 
state into four FAO-based suitability categories to assist tree-planting 
decisions of forest rangers (FAO, 1984). High suitability category in
cludes areas with a high probability of achieving established plantations 
due to largely supportive soil and other site quality conditions. Medium 
suitability category represents areas with an above-average probability 
of achieving established plantations due to moderate availability of open 
areas for growing trees and modest soil, other site quality conditions, 
and human dependence pressure. Low suitability areas are those with 
lowest probability of achieving established plantations due to inade
quate soil and other site quality conditions, low availability of open 
areas for growing trees and plausible human dependence pressure. 
Finally, largely unsuitable category represents areas that are almost 
inappropriate areas for long-term establishment of plantations due to 
severe soil and other site quality constraints, and higher plausible 
human dependence pressure. 

Any forest grid cell with score more than 70 is categorized as high 
suitability, score between 40 and 70 is categorized as medium suitability, 
positive scores up to 40 are categorized as low suitability, and grid cells 
with zero scores are categorized as largely unsuitable. 

Our choices of weights for expert/theory and ML-driven scores are 
influenced by large-scale epistemic uncertainties (unknown unknowns) 
in data-driven assessment of suitability of forestry landscapes for 
growing trees. That is, available data does not capture many aspects of 
the socio-ecological and biophysical factors that influence site suit
ability, but centuries of human experience as distilled into expert Indian 

Forest Service knowledge do. On the other hand, human knowledge is 
unable to take large compartment-scale deforestation dynamics into 
account. As such, traditional knowledge and data-driven ML approaches 
are complementary. 

To determine the weighting between traditional knowledge rules 
and the ML algorithm (our final result is 90% for traditional knowledge 
and 10% for ML), it would have been best to do formal parameter tuning 
to measure performance criteria like error probability, but ground truth 
was lacking to do this, as one must actually plant trees and see how they 
grow. Instead in our informal parameter tuning approach, we still varied 
the weighting parameter (among all possible 10% jumps) but measured 
the proportions of area classified to different land suitability categories. 
This distribution of total forestland among different categories [largely 
unsuitable, low suitability, medium suitability and high suitability] was 
then matched to the distributional assessments previously developed by 
the Indian Forest Service for the state of Himachal Pradesh (Himachal 
Forest Statistics, 2019) (Table 1). 

According to Indian Forest Service, out of the total recorded forest 
area in the state (37,948 km2), nearly 16,376 km2 is under pasture, 
barren lands, and perpetual snow. This leaves 21,572 km2 where there is 
some potential of tree growth with variable densities (Himachal Forest 
Statistics, 2019). Out of this tree growth potential estimate, 3113 km2 is 
under very dense forest and 315 km2 is under scrub, bushes, and other 
perennial shrubs (Forest Survey of India, 2019). Both of these categories 
have been excluded from the site suitability estimation, leaving a po
tential tree growth area of 18,144 km2. Our site suitability application 
estimated a total tree growth potential area of 17,559 km2. We attribute 
the difference (585 km2) to methodological limitations in tree growth 
estimations by the Indian Forest Service, which fails to capture the few 
scattered trees existing on largely unsuitable landscapes, which are not 
fit for any potential tree growth in largely unsuitable category (Forest 
Survey of India, 2019). 

We also collect spatial locations for 1547 plantations grown during 
2020 throughout the state from Himachal Pradesh GIS lab to assess their 
suitability for successful tree planting based on our site suitability 
classification scores. 

3. Results and discussion 

3.1. Limits to tree-planting in Himachal Pradesh 

Fig. 3 shows a portion of the state of Himachal Pradesh with site 
suitability classification for growing trees for grids under study. 

Our results show that 68.46% (38,114 km2) of the total area (55,673 
km2) in the state of Himachal Pradesh is highly unsuitable for growing 
trees and the remaining 31.54% area (17,559 km2) can support some 
tree growth based on site suitability categories. Within 31.54% of the 
geographical area, we found 15.70% (8740.66 km2) has low suitability, 
14.14% (7872.16 km2) has medium suitability, and 1.68% (935.31 km2) 
has high suitability for tree planting in the state of Himachal Pradesh. 
Tree planting can show better results in medium to high suitability 
areas. With more financial and technical support, it may be possible to 
bring low suitable areas (15.70%, 8740.66 km2) under tree plantations 
with low density. 

As per the Forest Survey of India (2019) report, Himachal Pradesh 
has a total area of 15,433 km2 under forest cover, which leaves about 
2126 km2 for potential tree plantations with low to moderate planting 
densities. If this entire area is available for tree plantations and con
verted to forests with low to high tree densities, Himachal Pradesh 
would have 31.54% (17,559 km2) of its geographical area under forests. 
This would be the limit to tree-planting in the state. 

However, we contend that even this tree planting potential can be 
difficult to realize on the ground as many available areas are located 
near village habitations and are being managed as grasslands by the 
local communities to meet grass requirements for their livestock. 
Moreover, the potential tree plantation area (2126 km2) will be 
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considerably reduced when the current state of acreage under forest 
diversions (area diverted to other land uses such as roads, buildings and 
other infrastructure and power projects under Forest Conservation Act, 
1980), encroachments (especially for agriculture and orchards), other 
community uses, and overlapping government and community tenure 
categories are taken into account. 

The largely unsuitable category includes a high percentage of Non- 
Forest land area (84.8%) with very low proportion under OF (Open 
Forest), MDF (Moderately Dense Forest), or VDF (Very Dense Forest) 
(Table 2). These areas are also located at a very high elevation (3562 m, 
average), and further 412,868 grid cells have villages falling at 1 km or 
less, indicating the extent of the pressure of the local population on 
forest use. The very high percentage under Non-Forest land (NF) 

indicates the presence of rocky, snow-bound, alpine and sub-alpine 
pastures, croplands, and water reservoirs, which restrict any produc
tive tree planting activity in the area. 

On the other hand, areas with low suitability for tree planting have 
58.42% area under Non-Forest, 20.3% under VDF, 12.37% under MDF, 
and 7% under OF (Table 2). These areas are located at an average 
elevation of 1651 m, and 332,166 grid cells have villages located at 1 km 
or less. Medium suitable areas have a high percentage under MDF 
(53%), followed by OF (23.38%), and then VDF (5.12%). The percent
age under NF is low (5.12%), which indicates the presence of areas for 
planting trees. Such areas are located at an average elevation of 1541 m, 
and 275,110 grid cells have villages within 1 km or less. Lastly, areas 
with high suitability have a very high percentage of (76.56%), followed 

Table 1 
Percentage of suitability among included grid cells out of the total geographical area of the state (Highly Suitable >70 score, Medium Suitable >40 score and ≤ 70 
score, Low suitability >0 and ≤ 40 score, Largely Unsuitable = 0 score).  

Proportion of rule/expert-based weightage Proportion of ML weightage Largely unsuitable (%) Low suitability (%) Medium suitability (%) High suitability (%) 

100 0 68.22 18.48 11.92 1.37 
90 10 68.46 15.71 14.15 1.68 
80 20 68.46 14.31 16.75 0.48 
70 30 68.46 13.06 18.29 0.19 
60 40 68.46 11.48 19.97 0.15 
50 50 68.46 9.37 22.05 0.12 
40 60 68.46 6.06 25.36 0.12 
30 70 68.46 3.57 27.85 0.12 
20 80 68.46 3.57 27.85 0.12 
10 90 68.46 3.57 27.86 0.11 
0 100 68.46 3.57 27.57 0.40  

Fig. 3. Map showing site suitability details for the state of Himachal Pradesh for growing trees. Only a portion of the state is shown to display the site suit
ability classes. 

Table 2 
Descriptive on plantation site suitability classification in the state of Himachal Pradesh.  

Suitability Mean OF% Mean MDF% Mean VDF% Mean NF% Mean elevation in meters Number of grid cells with village at 1 km or less 

Largely Unsuitable 4.87% 4.36% 2.39% 84.80% 3562 412868 
Low Suitability 7.00% 12.37% 20.30% 58.42% 1651 332166 
Medium Suitability 25.38% 53.00% 5.12% 5.12% 1541 275110 
High Suitability 76.56% 22.21% 0.15% 0.15% 1293 29158  
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by MDF (22.2%), and VDF (0.15%). Only 0.15% area falls under NF, 
which indicates high suitability of the area for planting trees (Table 2). 
These areas are located at a mean elevation of 1293 m and only 29,158 
grid cells have villages located at 1 km or less. 

Our results also show how the forest department is planting trees in 
largely unsuitable sites. Throughout the state of Himachal Pradesh, we 
found 25.4% of the total proposed tree plantations during the monsoon 
planting season of 2020 in largely unsuitable category (n = 393), 40.6% 
in areas with low suitability predictions (n = 627), 33.2% in areas with 
medium suitability (n = 513) and only 0.9% in areas with high suit
ability (n = 14). This is not a good distribution for approaching limits to 
tree planting. This trend may be due to several reasons. There is an 
overall absence of large patches of forests for planting trees across the 
state and, due to the target-driven approach of tree-planting programs 
and vested interests, forest rangers continue to select pockets where 
either tree planting is unnecessary due to high existing forest cover or 
there are poor site factors such as slope, elevation, soil quality, or other 
features (Fleischman, 2014; Ramprasad et al., 2020; Rana et al., 2022; 
Saxena, 1996). 

Moreover, governments and donors usually evaluate the perfor
mance of forest rangers and other officials based on accountability 
systems that emphasize targets for the number of trees or areas under 
plantation (Fleischman, 2014). Such tree planting works are visible to 
external agencies for monitoring and evaluation and are therefore pro
moted at large scale with forest rangers and other forest officials, who in 
turn compete with one another to maximize the number of trees and 
area planted, even if suitable areas for growing trees are not available on 
the ground. Finally, poor institutional incentives, rewards, and punish
ment systems in the forest department encourage large-scale tree 
planting at the cost of local livelihoods, biodiversity, and tree cover. The 
vested economic interests of the forest rangers motivate them to prefer 
tree planting and soil conservation works over ANR, silviculture oper
ations, effective fire and grazing management, or other forest 
improvement activities (Fleischman, 2014). 

3.2. Initial deployment of e-plantation site assistant (ePSA) 
recommendation engine 

Based on the above site suitability characteristics, we built the e- 
Plantation Site Assistant (ePSA) mobile app, a plantation site recom
mendation engine to assist forest rangers in selecting suitable sites for 
growing trees. A screenshot of ePSA is given in Fig. 4, showing different 
site suitability classes. Due to COVID-19, the there was a delay in 
launching the application, so only 201 out of about 1000 final users 
could test it on the ground. We do not believe, however, there is any 
systematic bias in this subset. 

A phone survey was conducted in September 2020 and forest officials 
were asked to explain whether site suitability recommendations 
matched field realities. Our user study to assess the usefulness of ePSA 
surveyed 30 out of these 201 users (15%) via a random sample. Note that 
a sample of 30 is much larger than most studies in human-computer 
interaction, where the average sample size is 12 (Caine, 2016). Using 
standard statistical methods for survey-based research, a sample size of 
30 out of 201 has an 11% margin of error at the 80% confidence level. 
Adequate care was taken not to bias the user study findings due to the 
position of the first author, and we believe there is no such bias in the 
responses of the forest officials concerning their feedback about ePSA. 
While interviewing, the identity of the first author was not disclosed to 
forest officials. Moreover, no interviewed official works directly under 
the first author. 

Only 4 officials disagreed with the recommendations of the ePSA, 
whereas 26 officials fully agreed with the suggestions made by the 
recommendation engine. That is, 86.67% of the officials were satisfied 
with recommendations, showing high reliability of the site suitability 
and recommendation engine for growing trees. Given our constraints in 
obtaining empirical data on the quality of suitability prediction 

generated and the fact we used expert feedback to confirm ePSA quality, 
it will be fruitful to revisit this study in the future to evaluate the 
progress of tree growth in recommended areas on the ground. Note that 
tree growth itself does take several years. 

Notably, our user study (carried out using standard methodology for 
such research in the human-computer interaction (HCI) literature and 
not just unstructured anecdotes) indicates that it was not just the in
formation provision through ePSA that was useful, but also the site- 
suitability assessments. In particular, forest officials in 11 sites shifted 
to new locations for planting trees based on the ePSA recommendations. 
This is a significant fraction, given the level of professional prestige that 
Forest Service officers enjoy in India, and given the well-known phe
nomenon that people in high-prestige professions (such as doctors, 
judges, and astronauts) are most likely to assert their own judgements 
ahead of machine-recommended assessment (see e.g. Neil Armstrong 
landing on the moon by joystick rather than autopilot, as described by 
Mindell (2011)). 

3.3. Limitations 

Our approach has some limitations. First, satellite data may miss 
some important social-ecological dynamics due to the choice of specific 
spatial and temporal resolutions, incompatibility in various spatial 
layers, and radiometric corrections. For example, a stunted Chir Pine 
(Pinus roxburghii) vegetation due to local biophysical constraints may 
appear to be a patch of scrubland or areas with scarce trees, which the 
algorithm may suggest as a potential patch for plantation. Second, 
despite the usefulness of the machine learning models in learning and 

Fig. 4. ePSA mobile app showing site suitability classes.  
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drawing inferences from patterns in data and making site suitability 
predictions, they still are not capable to provide causal inference-based 
insights limiting the broader utility of prediction-based inferences 
(Mullainathan and Spiess, 2017; Rana and Miller, 2019; Rana and 
Varshney, 2020). For example, regular diversion of forestland to 
non-forestry uses such as constructing roads, dams, and buildings, 
salvage tree removal by state forest corporation, and forest loss due to 
wildfires, floods, and diseases require continual updating of site suit
ability classification to make it more dynamic and suited to local field 
realities. Finally, ePSA needs to be further tested on the ground to 
evaluate its performance under diverse settings and iteratively 
improved. 

4. Conclusion 

Our findings show that there are limits to tree planting programs as a 
natural climate solution in the state of Himachal Pradesh, India. Out of 
the total geographical area of the state, 68.46% is unsuitable to grow 
trees, 15.70% has low suitability, and 14.14% has medium suitability 
due to critical biophysical, edaphic and socio-economic factors. Only a 
small percentage of the area in the state of Himachal Pradesh has high 
suitability (1.68%) where trees (1100 trees per hectare) can be planted. 
We also found continual high percentage of tree planting in places where 
there is a high likelihood of plantation failure and wastage due their 
poor site quality, in turn perhaps due to vested interests of forest officials 
(Rana et al., 2022). 

Under limited field testing and validation, we also show the potential 
utility of using e-Plantation Site assistant recommendation engine in 
assisting forest rangers in selecting the right locations for growing trees 
based on site suitability considerations. Overall, our paper suggests the 
utility of combining remote sensing data, theoretical and field expert- 
knowledge, and machine learning models in the form of algorithm 
fusion from the AI safety literature (Kshetry and Varshney, 2019) in 
dealing with complex social-ecological problems such as selecting suit
able sites for planting trees. 

This finding has some important implications for the tree-based 
restoration objectives of the state and country, and are relevant to 
similar developing country contexts. First, state and national govern
ments should adjust their plantation targets as per the field site suit
ability conditions and higher expectations from tree-based natural 
climate solution should be properly curtailed due to land use, financial, 
and operational constraints (Gopalakrishna et al., 2022; Rana et al., 
2022; Zeng et al., 2020). For example, site suitability assessments should 
be conducted for all states to adjust India’s Nationally Determined 
Contributions to take field site suitability conditions into account. 
Moreover, instead of setting ambitious goals such as achieving forest 
cover in 66% of the geographical area of Himalayan states, tree planting 
targets should be made based on how much suitable area is available to 
grow trees as per the site suitability classification. For example, we 
found that Himachal Pradesh can only achieve 31.54% forest cover (or 
less due to encroachments, forest conversion to other land uses, etc.) due 
to socio-ecological and biophysical limits. Though there is a need for 
further validation of the plantation site assistant recommendation sys
tem (smartphone app), its use across India and in several other similar 
country contexts can not only help identify the most suitable sites for 
growing trees while promoting transparency, but also can save a 
tremendous amount of money that can be diverted to other important 
socio-economic challenges or alternative climate mitigation strategies 
(Rana et al., 2022). 

Second, there is a need to amend current plantation norms and 
strategies to obtain long-term success of tree-based restoration pro
grams. For example, tree planting programs and norms are imposed by 
higher-ups uniformly across diverse country contexts without carrying 
out a prior site assessment and diagnostic to design such programs as per 
local site requirements based on existing vegetation, resource use, and 
site factors (Fleischman, 2014; Rana et al., 2022; Rana and Miller, 

2021). Instead of focusing on targets, tree-planting based natural 
climate solutions should support community-designed site-specific in
terventions to ensure triple outcomes: enhanced biodiversity, carbon 
storage, and improved livelihoods. In many such places, a higher focus 
on assisted natural regeneration (ANR) rather than planting trees can be 
more effective and efficient to protect local biodiversity and reduce 
waste of financial resources (Crouzeilles et al., 2020; Duguma et al., 
2020). Effective participation of local communities in site/species se
lection and empowering them to take ownership of these plantations 
through community forest rights can ensure long-term success of tree 
plantations in terms of benefiting livelihoods, carbon storage, and 
biodiversity conservation (Rana and Miller, 2021). 

In sum, shifting the focus from extensive target-based tree-planting 
to protecting forest ecosystem goods and services, supporting forest- 
based livelihoods, prioritizing assisted natural regeneration, and pro
moting broadleaved species seems the most appropriate future direction 
for the India and other developing countries with similar contexts while 
adopting tree-restoration based natural climate solutions. In this 
context, site suitability assessments and site recommendation engine can 
play an important role in prioritizing suitable areas for growing trees to 
minimize waste, maximize co-benefits, and otherwise evaluate such tree 
planting activities. The practical utility of site suitability-based recom
mendations indicates its promising use in largely similar contexts of 
other developing countries that are also witnessing similar large-scale 
industrial or small-scale public tree planting programs and can help 
avoid massive waste on tree planting programs with little contribution 
to carbon storage and local livelihoods, by staying within fundamental 
limits of tree planting. 
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